
Module 4: Structured Query Language (SQL) - Part 1
Welcome to Module 4, where we begin our journey into Structured Query Language
(SQL). If the previous modules provided you with the theoretical understanding of how
databases are designed (ER Model) and organized (Relational Model), SQL is where theory
meets practice. SQL is the universal language that almost all relational database systems
understand. It's the tool you'll use to create your database structure, add data to it, retrieve
specific information, update records, and even delete them.

In this first part of our SQL exploration, we will focus on the fundamental commands that
allow you to define the very shape of your database (Data Definition Language - DDL) and
manipulate the data stored within it (Data Manipulation Language - DML). By the end of
this module, you will be able to construct basic SQL statements to build tables, enforce
rules, insert new data, query for information, and modify existing records.

Chapter 4: SQL Fundamentals (DDL & DML)

4.1 Introduction to SQL: History and Standards

What is SQL?

Structured Query Language (SQL) is the standard language used to communicate with
and manage data in relational database management systems (RDBMS). It is a powerful,
high-level language that allows users to interact with databases by telling the system what
they want to achieve, rather than how to achieve it. This makes SQL a declarative
language – you declare your desired result, and the RDBMS figures out the steps to get
there.

SQL is used for:

●​ Creating and modifying database structures: Defining tables, specifying rules
(constraints), and setting up relationships.

●​ Manipulating data: Inserting new records, updating existing ones, deleting records,
and retrieving information.

●​ Controlling access: Granting or revoking permissions to users.

History of SQL:

SQL's origins trace back to the early 1970s at IBM.

●​ It was initially developed by Donald D. Chamberlin and Raymond F. Boyce at IBM's
San Jose Research Laboratory.

●​ Their original language was called SEQUEL (Structured English Query Language),
designed for IBM's System R experimental RDBMS.

●​ The name was later shortened to SQL due to a trademark conflict.
●​ SQL quickly gained popularity, leading to commercial implementations such as IBM's

SQL/DS and DB2.

●​ Its success spurred other database vendors to adopt similar languages, eventually
leading to the need for standardization.

SQL Standards:

To ensure interoperability and portability across different database systems, SQL has been
standardized by major organizations:

●​ The American National Standards Institute (ANSI) first published an SQL standard
in 1986.

●​ The International Organization for Standardization (ISO) also publishes SQL
standards, often in conjunction with ANSI.

●​ Key standard versions include SQL-92 (a significant milestone), SQL:1999,
SQL:2003, SQL:2008, SQL:2011, and SQL:2016.

●​ Importance of Standards: While different RDBMS (like MySQL, PostgreSQL,
Oracle Database, Microsoft SQL Server) have their own variations or "dialects" of
SQL, they largely adhere to the core ANSI/ISO SQL standards. This adherence
means that a basic SQL query written for one database system will often work with
minor or no modifications on another, making SQL a truly universal language for
relational databases.

4.2 Data Definition Language (DDL)

The Data Definition Language (DDL) portion of SQL is used to define, modify, and delete
the structure (or schema) of your database. Think of DDL commands as the tools you use to
build the "empty boxes" (tables) in your database and set the rules for what kind of data can
go into them. DDL statements affect the database schema, not the data itself.

The primary DDL commands we will cover are CREATE TABLE, ALTER TABLE, and DROP
TABLE.

4.2.1 CREATE TABLE Statement

The CREATE TABLE statement is used to create a new table in your database. When you
create a table, you specify its name, the names of all its columns, the data type for each
column, and any constraints (rules) that apply to those columns or the table as a whole.

General Syntax:

SQL
CREATE TABLE table_name (
 column1_name data_type [column_constraint],
 column2_name data_type [column_constraint],
 ...
 [table_constraint]
);

●​ CREATE TABLE: The keywords that initiate the creation of a new table.

●​ table_name: The unique name you choose for your new table (e.g., Students,
Courses).

●​ column_name: The unique name for each column within that table (e.g.,
StudentID, FirstName).

●​ data_type: Specifies the type of data that can be stored in that column (e.g.,
INTEGER, VARCHAR(100), DATE). We'll discuss basic data types in Section 4.4.

●​ [column_constraint]: An optional rule that applies to a single column (e.g., NOT
NULL, UNIQUE). These are placed immediately after the column's data type.

●​ [table_constraint]: An optional rule that applies to the table as a whole, or
involves multiple columns (e.g., PRIMARY KEY (col1, col2), FOREIGN KEY).
These are typically placed after all column definitions.

Example of CREATE TABLE:

Let's create a Students table and a Departments table:

SQL
CREATE TABLE Departments (
 DeptID INTEGER PRIMARY KEY,
 DeptName VARCHAR(50) NOT NULL UNIQUE,
 Location VARCHAR(100)
);

CREATE TABLE Students (
 StudentID INTEGER PRIMARY KEY,
 FirstName VARCHAR(50) NOT NULL,
 LastName VARCHAR(50) NOT NULL,
 DateOfBirth DATE,
 Email VARCHAR(100) UNIQUE,
 MajorDeptID INTEGER,
 EnrollmentDate DATE DEFAULT CURRENT_DATE,
 CHECK (DateOfBirth < '2007-01-01'), -- Students must be at least 18 (roughly)
 FOREIGN KEY (MajorDeptID) REFERENCES Departments(DeptID)
);

4.2.2 Defining Constraints

Constraints are rules that are enforced on data columns or tables to maintain data integrity
and consistency, as discussed in Module 2. They ensure that data conforms to specific
business rules and prevent invalid data from being inserted, updated, or deleted.

Constraints can be defined in two ways:

●​ Inline (Column-level): Defined immediately after the column definition to which they
apply.

●​ Out-of-line (Table-level): Defined separately after all column definitions, typically for
constraints that involve multiple columns or for better readability.

Let's detail the most common constraints:

●​ PRIMARY KEY Constraint:
○​ Purpose: Uniquely identifies each row (tuple) in a table. It ensures that no

two rows have the same value for the primary key column(s), and that no part
of the primary key is NULL. A table can have only one primary key.

Syntax (Inline - Single Column PK): column_name data_type PRIMARY KEY​
SQL​
StudentID INTEGER PRIMARY KEY

○​

Syntax (Out-of-line - Single or Composite PK): PRIMARY KEY (column1_name,
[column2_name, ...])​
SQL​
PRIMARY KEY (StudentID) -- For a single column PK
PRIMARY KEY (CourseID, StudentID) -- For a composite PK (e.g., in an enrollment table)

○​
○​ Example from Students table: StudentID INTEGER PRIMARY KEY

●​ FOREIGN KEY Constraint:
○​ Purpose: Links a column (or set of columns) in one table (the "child" or

referencing table) to the PRIMARY KEY (or UNIQUE key) in another table (the
"parent" or referenced table). It enforces referential integrity, ensuring that a
foreign key value always refers to an existing primary key value in the
referenced table, or is NULL (if allowed).

○​ Syntax (Out-of-line - Most Common): FOREIGN KEY
(referencing_column1, ...) REFERENCES
referenced_table(referenced_pk_column1, ...) [ON DELETE
action] [ON UPDATE action]

○​ REFERENCES: Keyword followed by the parent table name and the parent
table's primary/unique key column(s) in parentheses.

○​ ON DELETE action: Specifies what happens to child rows when the parent
row is deleted. Common actions:

■​ NO ACTION or RESTRICT: Prevents deletion of the parent row if child
rows exist. (Default in many systems).

■​ CASCADE: Deletes child rows when the parent row is deleted.
■​ SET NULL: Sets the foreign key value in child rows to NULL when the

parent row is deleted. (Requires the foreign key column to be
nullable).

○​ ON UPDATE action: Specifies what happens to child rows when the
parent's primary key is updated. Actions are similar to ON DELETE.

○​ Example from Students table: FOREIGN KEY (MajorDeptID)
REFERENCES Departments(DeptID) ON DELETE SET NULL ON
UPDATE CASCADE

■​ This means if a department is deleted, students previously majoring in
that department will have their MajorDeptID set to NULL.

■​ If a DeptID in the Departments table changes, all MajorDeptID
values in Students referring to it will automatically update to the new
DeptID.

●​ NOT NULL Constraint:
○​ Purpose: Ensures that a column cannot store NULL values. Every row must

have a definite value for this column.
○​ Syntax (Inline): column_name data_type NOT NULL
○​ Example from Students table: FirstName VARCHAR(50) NOT NULL

●​ UNIQUE Constraint:
○​ Purpose: Ensures that all values in a specific column (or set of columns) are

unique across all rows in the table. While similar to PRIMARY KEY, a UNIQUE
constraint can allow one NULL value for that column (if the column is not also
NOT NULL).

Syntax (Inline - Single Column): column_name data_type UNIQUE​
SQL​
Email VARCHAR(100) UNIQUE

○​

Syntax (Out-of-line - Single or Composite): UNIQUE (column1_name,
[column2_name, ...])​
SQL​
UNIQUE (DeptName) -- From Departments table example
UNIQUE (CourseID, ProfessorID) -- Example composite unique key

○​
○​ Example from Students table: Email VARCHAR(100) UNIQUE

●​ CHECK Constraint:
○​ Purpose: Enforces a specific condition on the values in a column or set of

columns. If a value violates the condition, the insertion or update operation is
rejected.

Syntax (Inline): column_name data_type CHECK (condition)​
SQL​
Age INTEGER CHECK (Age >= 18 AND Age <= 100)

○​

Syntax (Out-of-line - For complex conditions or multiple columns): CHECK
(condition)​

SQL​
CHECK (Salary > 0)
CHECK (StartDate < EndDate)

○​
○​ Example from Students table: CHECK (DateOfBirth <

'2007-01-01')
●​ DEFAULT Constraint:

○​ Purpose: Specifies a default value for a column. If no value is explicitly
provided for this column during an INSERT operation, the default value will be
automatically inserted.

○​ Syntax (Inline): column_name data_type DEFAULT default_value
○​ Example from Students table: EnrollmentDate DATE DEFAULT

CURRENT_DATE
■​ CURRENT_DATE is a function that returns the current system date.

4.2.3 ALTER TABLE Statement

The ALTER TABLE statement is used to modify the structure of an existing table. You can
use it to add, drop, or modify columns, or to add and remove constraints.

Common ALTER TABLE operations:

Adding a New Column:​
SQL​
ALTER TABLE table_name
ADD COLUMN new_column_name data_type [constraint];

●​
○​ Example: ALTER TABLE Students ADD COLUMN PhoneNumber

VARCHAR(20);

Dropping an Existing Column:​
SQL​
ALTER TABLE table_name
DROP COLUMN column_name;

●​
○​ Caution: This will permanently delete the column and all its data.
○​ Example: ALTER TABLE Students DROP COLUMN PhoneNumber;

Adding a Constraint (out-of-line syntax only for existing tables):​
SQL​
ALTER TABLE table_name
ADD CONSTRAINT constraint_name constraint_definition;

●​

○​ constraint_name: An optional name for the constraint, useful for dropping
it later.

○​ Example: ALTER TABLE Students ADD CONSTRAINT UQ_Email
UNIQUE (Email);

Dropping a Constraint:​
SQL​
ALTER TABLE table_name
DROP CONSTRAINT constraint_name; -- For named constraints
-- OR (depending on DBMS, for unnamed PRIMARY KEY/UNIQUE)
-- DROP PRIMARY KEY;
-- DROP UNIQUE (column_name);

●​
○​ Example: ALTER TABLE Students DROP CONSTRAINT UQ_Email;

●​ Modifying a Column's Data Type or Properties (DBMS-specific syntax):
○​ Syntax for modifying columns can vary significantly between RDBMS (e.g.,

ALTER COLUMN in SQL Server, MODIFY COLUMN in Oracle, ALTER COLUMN
in PostgreSQL/MySQL for specific changes). Always consult your specific
DBMS documentation.

Example (Conceptual for changing data type, actual syntax varies):​
SQL​
ALTER TABLE Students
ALTER COLUMN FirstName TYPE VARCHAR(100); -- PostgreSQL/MySQL style

○​

4.2.4 DROP TABLE Statement

The DROP TABLE statement is used to completely remove an existing table from the
database. This command deletes both the table's structure (schema) and all the data within
it.

General Syntax:

SQL
DROP TABLE table_name;

●​ DROP TABLE: Keywords to initiate the table deletion.
●​ table_name: The name of the table to be deleted.

Caution: This is an irreversible operation! Once a table is dropped, its data and structure are
lost unless you have a backup.

●​ Example: DROP TABLE Students;

●​ Important: If other tables have foreign keys referencing the table you are trying to
drop, the DROP TABLE command might fail due to referential integrity constraints.
You might need to drop the referencing foreign keys first, or use a CASCADE option (if
supported and desired by your DBMS) to automatically drop dependent objects.

○​ DROP TABLE Departments CASCADE; (If supported, this would drop
Departments and automatically drop the foreign key MajorDeptID in
Students that references Departments.)

4.3 Data Manipulation Language (DML)

The Data Manipulation Language (DML) portion of SQL is used for managing and
manipulating the actual data stored within the database tables. DML commands allow you to
insert new rows, retrieve existing data, update values in rows, and delete rows. These
statements affect the content of the database, not its structure.

The primary DML commands we will cover are INSERT, SELECT, UPDATE, and DELETE.

4.3.1 INSERT Statements

The INSERT statement is used to add new rows (tuples) of data into an existing table.

Syntax Option 1: Inserting values into specific columns (Recommended): This is the
safest and most common way to insert data, as it explicitly lists the columns you are
providing values for.

SQL
INSERT INTO table_name (column1, column2, ...)
VALUES (value1, value2, ...);

●​ INSERT INTO table_name: Specifies the table where data will be added.
●​ (column1, column2, ...): An optional (but recommended) list of columns you

are providing values for. The order here must match the order of values in the
VALUES clause. If a column is omitted, it will either get its DEFAULT value or be NULL
(if NOT NULL is not specified).

●​ VALUES (value1, value2, ...): The list of actual values to be inserted. Each
value must match the data type and constraints of its corresponding column. Text
values are enclosed in single quotes (').

Example 1 (Inserting into all specified columns):​
SQL​
INSERT INTO Departments (DeptID, DeptName, Location)
VALUES (10, 'Computer Science', 'Main Campus');

●​

Example 2 (Inserting into specific columns, letting others default/be NULL):​
SQL​
INSERT INTO Students (StudentID, FirstName, LastName, MajorDeptID)
VALUES (1, 'Alice', 'Smith', 10);
-- DateOfBirth, Email, EnrollmentDate would be NULL or use their DEFAULTs

●​

Syntax Option 2: Inserting values into all columns (Order-dependent - Use with
Caution): If you omit the column list, you must provide values for all columns in the exact
order they were defined in the CREATE TABLE statement. This is less robust as table
structure changes can break your inserts.

SQL
INSERT INTO table_name
VALUES (value1, value2, ...);

Example: (Assuming Students columns are StudentID, FirstName, LastName,
DateOfBirth, Email, MajorDeptID, EnrollmentDate)​
SQL​
INSERT INTO Students
VALUES (2, 'Bob', 'Johnson', '2005-02-20', 'bob@example.com', 10, '2023-09-01');

●​

Syntax Option 3: Inserting data from another table (INSERT SELECT): You can insert
rows into a table by selecting data from another table (or the same table).

SQL
INSERT INTO target_table (column1, column2, ...)
SELECT source_column1, source_column2, ...
FROM source_table
WHERE condition;

Example: Imagine a NewStudents table with temporary data.​
SQL​
INSERT INTO Students (StudentID, FirstName, LastName, Email)
SELECT NewStudentID, NewFirstName, NewLastName, NewEmail
FROM NewStudents
WHERE AdmissionStatus = 'Admitted';

●​

4.3.2 SELECT Statement: Basic Queries

The SELECT statement is the most frequently used DML command. It is used to retrieve
data from one or more tables in your database. The result of a SELECT query is always a
new, temporary table called a result set.

Basic Syntax:

SQL
SELECT [DISTINCT] column1, column2, ... (or *)
FROM table_name
[WHERE condition];

●​ SELECT: The keyword that begins a data retrieval query.
●​ [DISTINCT]: An optional keyword. If included, it ensures that only unique

(non-duplicate) rows are returned in the result set. If omitted, all matching rows,
including duplicates, are returned.

●​ column1, column2, ...: A comma-separated list of the specific column names
you want to retrieve.

●​ *: A wildcard character that means "select all columns" from the specified table(s).
●​ FROM table_name: Specifies the table (or tables) from which to retrieve the data.
●​ [WHERE condition]: An optional clause that filters the rows. Only rows that satisfy

the specified condition(s) will be included in the result set.

Examples of Basic SELECT Queries:

Select all columns from a table:​
SQL​
SELECT *
FROM Students;

●​
○​ Result: All columns and all rows from the Students table.

Select specific columns from a table:​
SQL​
SELECT FirstName, LastName, Email
FROM Students;

●​
○​ Result: Only FirstName, LastName, and Email columns for all students.

Select distinct values from a column:​
SQL​
SELECT DISTINCT MajorDeptID
FROM Students;

●​
○​ Result: A list of unique MajorDeptIDs found in the Students table (e.g.,

10, 20, NULL).

Using AS for Column Aliases: You can rename columns in the result set for readability.​
SQL​
SELECT FirstName AS StudentFirstName, LastName AS StudentLastName
FROM Students;

●​

The FROM Clause:

●​ Purpose: The FROM clause indicates which table(s) the data should be retrieved
from. It's mandatory for SELECT queries that access data from tables.

●​ Example: FROM Employees tells the database to look for data in the Employees
table.

The WHERE Clause:

●​ Purpose: The WHERE clause is used to filter rows based on a specified condition.
Only rows that meet the condition(s) are included in the result. It's applied before any
other operations like sorting or aggregation.

○​ Comparison Operators: Used to compare values.
■​ = (Equal to)
■​ != or <> (Not equal to)
■​ > (Greater than)
■​ < (Less than)
■​ >= (Greater than or equal to)
■​ <= (Less than or equal to)

Example:​
SQL​
SELECT StudentID, FirstName, LastName
FROM Students
WHERE MajorDeptID = 10; -- Students in DeptID 10
SQL​
SELECT DeptName, Location
FROM Departments
WHERE Location != 'Main Campus'; -- Departments not on Main Campus

■​
○​ Logical Operators (Boolean Operators): Used to combine multiple

conditions.
■​ AND: Both conditions must be true.
■​ OR: At least one condition must be true.
■​ NOT: Negates a condition (reverses its truth value).

Example:​
SQL​
SELECT FirstName, LastName, DateOfBirth

FROM Students
WHERE MajorDeptID = 10 AND DateOfBirth < '2005-01-01';
-- Students in Dept 10 AND born before Jan 1, 2005
SQL​
SELECT StudentID, Email
FROM Students
WHERE MajorDeptID = 20 OR Email IS NULL;
-- Students in Dept 20 OR those with no email
SQL​
SELECT DeptName
FROM Departments
WHERE NOT (Location = 'East Campus');
-- Departments not located on East Campus

■​
○​ Other Useful Operators in WHERE Clause (Fundamentals):

■​ BETWEEN value1 AND value2: Checks if a value is within a
specified range (inclusive).

■​ Example: WHERE Salary BETWEEN 40000 AND 60000;
■​ IN (value1, value2, ...): Checks if a value matches any

value in a list.
■​ Example: WHERE MajorDeptID IN (10, 30, 50);

■​ LIKE pattern: Used for pattern matching with string values.
■​ %: Matches any sequence of zero or more characters.
■​ _: Matches any single character.
■​ Example: WHERE LastName LIKE 'Smi%'; (Starts with

"Smi")
■​ Example: WHERE FirstName LIKE '_a%'; (Second letter

is 'a')
■​ IS NULL / IS NOT NULL: Checks for NULL values. You cannot use

= or != with NULL.
■​ Example: WHERE Email IS NULL;
■​ Example: WHERE MajorDeptID IS NOT NULL;

4.3.3 UPDATE Statements

The UPDATE statement is used to modify existing data in one or more rows of a table.

General Syntax:

SQL
UPDATE table_name
SET column1 = new_value1, column2 = new_value2, ...
[WHERE condition];

●​ UPDATE table_name: Specifies the table whose data will be updated.
●​ SET column1 = new_value1, ...: Lists the columns to be modified and their

new values. You can update one or many columns in a single UPDATE statement.
●​ [WHERE condition]: This clause is extremely important. It specifies which rows

will be updated. If the WHERE clause is omitted, the UPDATE statement will affect all
rows in the table!

Example 1 (Updating specific rows):​
SQL​
UPDATE Students
SET Email = 'alice.smith@newdomain.com'
WHERE StudentID = 1;
-- Changes Alice Smith's email if StudentID is 1

●​

Example 2 (Updating multiple columns for specific rows):​
SQL​
UPDATE Departments
SET Location = 'North Campus', DeptName = 'Computer Science & Engineering'
WHERE DeptID = 10;
-- Changes location and name for Department ID 10

●​

Example 3 (Updating all rows - Use with Extreme Caution!):​
SQL​
UPDATE Employees
SET Salary = Salary * 1.05; -- Gives a 5% raise to ALL employees

●​

4.3.4 DELETE Statements

The DELETE statement is used to remove one or more existing rows (tuples) from a table.

General Syntax:

SQL
DELETE FROM table_name
[WHERE condition];

●​ DELETE FROM table_name: Specifies the table from which rows will be deleted.
●​ [WHERE condition]: This clause is extremely important. It specifies which rows

will be deleted. If the WHERE clause is omitted, the DELETE statement will remove all
rows from the table!

Example 1 (Deleting specific rows):​
SQL​
DELETE FROM Students
WHERE StudentID = 2;
-- Deletes the student with StudentID 2

●​

Example 2 (Deleting rows based on a condition):​
SQL​
DELETE FROM Departments
WHERE Location = 'Old Building';
-- Deletes all departments located in 'Old Building'

●​

Example 3 (Deleting all rows - Use with Extreme Caution!):​
SQL​
DELETE FROM Employees; -- This will remove ALL records from the Employees table!

●​
○​ Note: While DELETE FROM table_name; removes all rows, it does not

remove the table structure itself. The table will still exist, but it will be empty.
To remove both structure and data, use DROP TABLE.

4.4 Basic SQL Data Types

When you define columns in your tables using CREATE TABLE or ALTER TABLE, you must
specify a data type for each column. Data types tell the database what kind of values a
column can hold (e.g., numbers, text, dates) and how much storage space to allocate. They
are crucial for data validation and for performing correct operations.

Here are some of the most common and widely supported basic SQL data types. Keep in
mind that exact names and variations might differ slightly between different RDBMS (e.g.,
MySQL, PostgreSQL, Oracle, SQL Server).

●​ Numeric Types: Used for storing numbers.
○​ INTEGER (or INT): Stores whole numbers (integers) without any decimal

places.
■​ Example: StudentID INTEGER, Age INT.

○​ DECIMAL(p, s) (or NUMERIC(p, s)): Stores exact decimal numbers.
■​ p (precision): The total number of digits (before and after the decimal

point).
■​ s (scale): The number of digits after the decimal point.
■​ Example: Salary DECIMAL(10, 2) (can store numbers up to

99,999,999.99).

○​ FLOAT (or REAL): Stores approximate floating-point numbers (numbers with
decimal places, but precision might vary). Use for scientific calculations where
exact precision isn't paramount.

■​ Example: GPA FLOAT.
●​ String Types (Character Types): Used for storing text.

○​ VARCHAR(length) (or VARCHAR2, NVARCHAR): Stores variable-length
strings. The length specifies the maximum number of characters allowed. It
uses only the space needed for the actual data. NVARCHAR variations typically
support Unicode characters.

■​ Example: FirstName VARCHAR(50), Email VARCHAR(100).
○​ CHAR(length) (or NCHAR): Stores fixed-length strings. If the actual string is

shorter than length, it's padded with spaces. Uses fixed space regardless of
content. Less common than VARCHAR for general text.

■​ Example: Gender CHAR(1) (for 'M' or 'F').
○​ TEXT (or LONGTEXT, CLOB): Used for very long strings or large blocks of text.

The maximum length varies significantly by DBMS.
■​ Example: CourseDescription TEXT.

●​ Date/Time Types: Used for storing dates, times, or both.
○​ DATE: Stores a date (year, month, day).

■​ Example: DateOfBirth DATE.
○​ TIME: Stores a time (hour, minute, second).

■​ Example: ClassStartTime TIME.
○​ DATETIME (or TIMESTAMP): Stores both a date and a time. TIMESTAMP

often includes time zone information or automatic update capabilities.
■​ Example: EnrollmentDateTime DATETIME, LastLogin

TIMESTAMP.
●​ Boolean Types: Used for storing true/false values.

○​ BOOLEAN: Stores TRUE or FALSE. (Directly supported in some DBMS like
PostgreSQL).

○​ TINYINT or BIT: In some DBMS (like MySQL, SQL Server), BOOLEAN is
often implemented as a numeric type (e.g., TINYINT(1) where 0 means
false, 1 means true).

■​ Example: IsActive BOOLEAN or IsActive TINYINT(1).

Choosing the correct data type for each column is a crucial part of good database design, as
it impacts storage efficiency, data integrity, and query performance.

Module Summary

In this Module 4, we embarked on our practical journey into Structured Query Language
(SQL), the universal language for interacting with relational databases. We started with an
introduction to SQL's history and its importance as a standardized, declarative language for
database management.

We then thoroughly explored the Data Definition Language (DDL) commands, which are
used to define and manage the database's structure (its schema). You learned how to:

●​ Use CREATE TABLE to build new tables, specifying their columns and initial
properties.

●​ Implement various constraints (PRIMARY KEY, FOREIGN KEY, NOT NULL,
UNIQUE, CHECK, DEFAULT) to enforce data integrity rules directly within your table
definitions, ensuring data quality and consistency.

●​ Modify existing table structures using ALTER TABLE to add or drop columns and
constraints.

●​ Completely remove tables and their data using DROP TABLE.

Following DDL, we transitioned to the Data Manipulation Language (DML) commands,
which are used to manage the actual data within your tables. You gained proficiency in:

●​ INSERT statements to add new rows of data into tables.
●​ The fundamental SELECT statement, the most common SQL command, for retrieving

data. You learned to select specific columns or all columns, use DISTINCT for
unique results, and crucially, apply the WHERE clause with various comparison and
logical operators (AND, OR, NOT, BETWEEN, IN, LIKE, IS NULL) to filter rows
based on specific conditions.

●​ UPDATE statements to modify existing data in one or more rows.
●​ DELETE statements to remove specific rows from a table.

Finally, we covered the Basic SQL Data Types, understanding their role in defining column
characteristics and ensuring appropriate storage and validation for numeric, string,
date/time, and boolean values.

	Module 4: Structured Query Language (SQL) - Part 1
	Chapter 4: SQL Fundamentals (DDL & DML)
	4.1 Introduction to SQL: History and Standards
	4.2 Data Definition Language (DDL)
	4.2.1 CREATE TABLE Statement
	4.2.2 Defining Constraints
	4.2.3 ALTER TABLE Statement
	4.2.4 DROP TABLE Statement

	4.3 Data Manipulation Language (DML)
	4.3.1 INSERT Statements
	4.3.2 SELECT Statement: Basic Queries
	4.3.3 UPDATE Statements
	4.3.4 DELETE Statements

	4.4 Basic SQL Data Types

	Module Summary

